Optimasi Seleksi Fitur Information Gain pada Algoritma Naïve Bayes dan K-Nearest Neighbor

نویسندگان

چکیده

There was an increase in the number of late payments tuition fees by 3,018 from a total 5,535 students at end 2020. This study uses Python library which requires data to be numeric type, so it transformation according type study, that has scale is transformed using ordinal encoder, and does not have one-hot encoding. The purpose this evaluate performance Naïve Bayes algorithm K-Nearest Neighbor with confusion matrix predicting payment UMKT. dataset used sourced financial administration bureau as many 12,408 distribution 90:10. Based on results calculation selection information gain features, best 4 attributes influence research are obtained, namely faculty, program, class, gender. evaluation obtain accuracy 55.19%, while only obtains 50.76%. obtained prediction derived gain, influences increasing Bayes, but use attribute makes decrease.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EigenJoints-based action recognition using Naïve-Bayes-Nearest-Neighbor

In this paper, we propose an effective method to recognize human actions from 3D positions of body joints. With the release of RGBD sensors and associated SDK, human body joints can be extracted in real time with reasonable accuracy. In our method, we propose a new type of features based on position differences of joints, EigenJoints, which combine action information including static posture, m...

متن کامل

Infrared Target Tracking Using Naïve-Bayes-Nearest-Neighbor

Robust yet efficient techniques for detecting and tracking targets in infrared (IR) images are a significant component of automatic target recognition (ATR) systems. In our previous works, we have proposed infrared target detection and tracking systems based on sparse representation method. The proposed infrared target detection and tracking algorithms are based on sparse representation and Bay...

متن کامل

Combination of Naïve Bayes Classifier and K-Nearest Neighbor (cNK) in the Classification Based Predictive Models

In this study, we present a new classifier that combines the distance-based algorithm K-Nearest Neighbor and statistical based Naïve Bayes Classifier. That is equipped with the power of both but avoid their weakness. The performance of the proposed algorithm in terms of accuracy is experimented on some standard datasets from the machine-learning repository of University of California and compar...

متن کامل

Klasifikasi Data Cardiotocography Dengan Integrasi Metode Neural Network Dan Particle Swarm Optimization

Backpropagation (BP) adalah sebuah metode yang digunakan dalam training Neural Network (NN) untuk menentukan parameter bobot yang sesuai. Proses penentuan parameter bobot dengan menggunakan metode backpropagation sangat dipengaruhi oleh pemilihan nilai learning rate (LR)-nya. Penggunaan nilai learning rate yang kurang optimal berdampak pada waktu komputasi yang lama atau akurasi klasifikasi yan...

متن کامل

Learning k-Nearest Neighbor Naive Bayes for Ranking

Accurate probability-based ranking of instances is crucial in many real-world data mining applications. KNN (k-nearest neighbor) [1] has been intensively studied as an effective classification model in decades. However, its performance in ranking is unknown. In this paper, we conduct a systematic study on the ranking performance of KNN. At first, we compare KNN and KNNDW (KNN with distance weig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: JISKA (Jurnal Informatika Sunan Kalijaga)

سال: 2022

ISSN: ['2527-5836', '2528-0074']

DOI: https://doi.org/10.14421/jiska.2022.7.3.237-255